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1. INTRODUCTION AND SUMMARY

For functions f'e C[0, 1] the expression

Bfix) = Y Fk/m) pus0), L
k=0

where

PuilX) = (Z) X1 — )t (xel0, 1n =12 k=0,1,.,n1

is called the Bernstein polynomial of order » of /. Popoviciu {6] proved that
for all ne N and all fe C[0, 1],

max | Bu(f; x) — fO)] < do(f; n7) (1.2)

[(Ee'2 1

with 4 = 3. Here w(f: 8) denotes the modulus of continuity of f, i.e.,

o(f;8) = sup |[f(x)—f(» @ >0

lz—yI<s
The best constant possible in (1.2) was obtained by Sikkema [9, 101, viz.,
A* = (4306 <+ 837(6)'/%)/5832 = 1.089887.%
Esseen [2] showed that the smallest B such that for all fe CI0, 1]

. | Bu(f2) — fO)]
HLSP 0,  (ny

1 Here and elsewhere numbers are rounded to the last digit shown.
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70 SCHURER AND STEUTEL
is given by
B=2 io(j + D{P2j + 2) — P(2))} = 1.045564,
i
where

B(x) = Qmy 2 [ exp(—he?) db.

The purpose of this paper is to derive results analogous to those of Sikkema
and Esseen for functions in C; (for notational reasons we prefer to write C;
rather than Ci[0, 1]; also we shall often consider functions defined on
(— o0, 0)). More precisely, let w,(f; 8) := w(f’; 8) and let

m 2| B(fi x) — f(x)| .

R e ol f, B (1.3)
then we shall obtain
¢ 1= sup ¢, (j=1,2) (1.4)
n=y
and
c:=lime,. (1.5)

n-o

A first result in this direction is due to Lorentz [5, p. 21}, who proves that
v < 3.

Section 2 contains two preliminary lemmas. In order to obtain Jocal
results, 1.e., results still containing x, in Section 3 we introduce the extremal
Sfunctions f, , containing x as a parameter, satisfying

L mB[B(fix) — f)
ealx) = sup =

where ¢,(x) and ¢(x) := lim,., ¢,(x) measure the degree of local approxi-
mation. From (1.3) and (1.6), together with the fact that c¢,(x) turns out to
be continuous (cf. (4.1)), it follows that

= n{B(fo ;%) — fax)}, (1.6)

Cn = JDAX Cn(X). (1.7)

In Section 4 we calculate ¢;(x) and ¢;, in Section 5-it is proved that
¢! = ¢; = }and in Section 6 that ¢*® = ¢; = (2(5)*/* — 1)/16 = 0.217008.
Finally, in Section 7 we obtain lim,,_., ¢,(x) and lim,,_. ¢, .

Remark 1.1. As linear functions are left intact by the Bernstein operators,
they are of no interest to our problems. Furthermore, expressions such as
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those in the right-hand side of (1.3) are undefined for linear functions;
therefore we shall disregard them, without indicating this in our notation.

Proofs in this paper have been kept rather brief; for full details we refer
to [7].

2. PRELIMINARY RESULTS

Ievma 2.1, Ler

Tn,s(x) = z (k - nx)spn,k(x) {S = 0: 1, 25}
k=0

and X := x(1 — x); then
Toolx) =1, T,.4x) = 0, Tpo(x) = nkX, 2.1
Tre(x) = 1503X3 + 5n2X%(5 — 26X) + nX(1 — 30X + 120X3). (2.2)
Proof. Recursion relations for the T, , can be found in {5, p. 141,

LEMMA 2.2. For S,(x) defined by

Sn(x) = 31172 3 |(k/n) — x| pp(x) (2.3
k=0
one has, [a] denoting the largest integer not exceeding a,
Sp(x) = n(n — m) (ri:z) X (1 — xym (m = [ax]); (2.4

S{x) has a unique maximum S, ,, on [mfn, (m 4 Vn] at (m + Djn + 1D
form =0, 1,..., [(n — D2] =: m*, and

i R — —
18nll = max Sy(x) = max S.(x)
= On.m* > S'n,m*-l > > Sn,l > Sn,o > (25)

T =105 01> 181 >8>

2.6
(42D 222 = || S, || > | Sall > 11 8g] > - @6

Proof- Equation (2.4) can be proved by using Hilfssatz 1 of [9]. it is
obvious from (2.4) that S,(x) has a unique maximum on [m/n, (m -+ 1}/n]
at (m + 1)/(n + 1). For the proofs of (2.5) and (2.6), which are straight-
forward but somewhat tedious, we refer to [7].

The numerical values of ||S,, || for n = 1, 2,..., 30 are shown in Table I
of Section 6.
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3. THE EXTREMAL FUNCTIONS

In this section we construct the functions £, satisfying (1.6). First, replacing
n7/2 by §, we construct extremal functions f in the slightly more general
setting, where errors are measured in terms of w,(f; 8) rather than w,( f; n=1/2).
Abbreviating

A,(f; x) 1= By(f; x) — f(x), (3.1
by (1.1) we have

A% = 3 pusd) [ 10 (32

We prove the following theorem.

THEOREM 3.1. For each ne N, for each x, € [0, 1] and each 8 > 0,

Xl _ 4
W Ry A9 (33)

where f, which depends on x, and 8, is defined ( for all real x) by

f(xﬂ) = 07 (34)
F@O=j+1 (B<x—x<G+D8j=0,+1, £2,..).

The functions f will be called extremal. We shall prove Theorem 3.1 in
a number of small steps, stated as lemmas, which gradually narrow the class
of functions to be considered. We first replace class C; by the slightly wider
class K; defined as follows:

K; = {f C; f is continuous with the exception of finitely many
jumps in finite intervals, 0 << w,(f;8) < 1}, (3.5)

where C denotes the set of continuous functions. Here w, > 0 excludes the
linear functions (cf. Remark 1.1), and w, < 1 is a simple matter of scale.
In order to avoid needless difficulties at the boundary points 0 and 1, here
and elsewhere we continue all functions to (—oo, o) in such a way that
their essential properties, e.g., convexity, are preserved. We now state and
prove our lemmas.

LemMma 3.1.

ERGEN | 4,07 %)
e w8 b w(fi8)

Proof. On [0, 1] f€ K, is the pointwise limit of functions in C; with the
same value of w,(f; ), as is easily seen by approximating f* by functions in
C and integrating. The lemma then follows from the continuity of B with
respect to pointwise convergence.

(%0 € [0, 1]).
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Lemma 3.2
I An(fa X)| . An(fa Xo) 1
WD) R u(fy sl D
feonvex

Proof. As f may be replaced by —f, without loss of generality we take
f€ K, such that 4,(f; x,) = 0. From f we construct a convex function f as
follows. Take f(x,) = f(x,) and define /' by

f'x)= inf S < x)
=

XK UKX

= sup f'w  (x

e use

o. (3.6)

Clearly, ' is nondecreasing, i.e., f is convex. We now prove that w( 78 <
wy(f3 8). If on [x, x + 8] the function f' varies by e, ie., if f'(x + 8) —
7'(x) = e, then by the definition of f’, for each 7 > 0 there are x, and x,
with x < xy < x, << x - 6 and such that f'(x,) — f'(xy) = ¢ — . This
implies that wy(f; 8) < w,(f;8) < 1. The remaining conditions for f to
be in K, are easily checked. Finally, as f’ < f’ for x < x,and ' > f' for
X = x,, it follows from (3.2) that 4,(f; x,) = 4,(f; x,) and the lemma is
proved.

For fixed x, and arbitrary f on (—o0, c0) we now define a continuous
function f* by
FHx +j8) = f(xo 4 j8)

o (=0, 41, £2,.5. (3.7
f* is linear on (x, + j&, x4 + j8 + &)

Lemmva 3.3, Let f be convex and fe K, then f* is convex and f*e€ K .

Proof. That f* is convex is trivial. To prove that f* € K;, we show that
wy(f*; 8) << ay(f; 8) < 1; the other conditions for K are easily seen to hold.
We proceed as follows. If ¢ is not of the form x, -4 /& then f* () is well
defined. If ¢ = x, -+ j§, we define f*'(¢) by continuity from the left. Now,
for any two points #, and #, with t; < £, < #; + 8 we have for some integer j

0 </t — f¥(0) < ¥+ 8) — f* (1)

= fxo +j8 + 8) — flxo + jO) _f(xo +J8) — flxo +J6 — 8)
3 5

— (1/8) f-iw Filxg -+ 1) dt — (1/9) fi Floey + 1) di

=) [+ ) = fln - o - B

from which it follows that w,(f*; 8) << wy(f; 8).
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LemmaA 3.4. Let fbe convex and f € K , then

An(f*;xo) An(f, xo)
(58 = adfs  (ocl0 1D

Proof. As f* = fon [0, 1], by the positivity of the operator B, we have
B, (f*;x) = B,(f: x) for all x€[0, 1]. As f*(x,) = f(x,) by definition, and
wi(f*; 8) < wy(f; 8) by the proof of Lemma 3.3, the lemma follows.

We now define a class K,* of piecewise linear functions by
Ks* ={feK,;foonvex, f* =, f(xo) =0, f'(x) = § for x, < x < X, + 6},

where the restrictions on f(x,) and f’ are not essential, as B,(/; x) = I(x)
for every linear function /. From the preceding four lemmas we now obtain

LemMma 3.5.

| An(fa Xl . 4,.(f Xp)
S0 b ey (eclD

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. For fe K;* we have in view of (3.2)

Afix) _ g N
iy~ L) [ s 3.8)

where f'/w, is a nondecreasing stepfunction with largest step equal to 1,
ie., with modulus of continuity equal to 1. It is obvious from (3.8) that
A, jw, is maximal if all steps of f'/w, are equal to 1, ie., if f'fw, =f" as
defined in (3.4). This proves the theorem.

We conclude this section by giving explicit expressions for f and 4,(f; x,).
From (3.4) we get by integration

f(x):%|x'—x0]+Z(\x"xol“j‘sh, (3.9
=1
where a, := max(a, 0). As f(x,) = 0 we have 4,(f; xo) = B,(f; x,), and
hence

An(f: x()) = Z

— — Xo | Pr,u(%)

'f"i > (ﬁ“xo

J=1 (& [n)~my| 240

— 8) Paslx).  (3.10)
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The extremal functions with § = n* have been used in [8] to obtain the

solution of similar problems as described in~ Section 1, Yvith wy{ f; n1/%
replaced by w,(f, nY). If § = n%/% we write f, instead of 7 (cf. (1.6)).

4. CALCULATION OF ¢,(X) AND ¢, FOR SMALL n

In this section we explicitly calculate ¢ (x) and ¢;. The calculation of
¢5(x) also serves as an example of the difficulties involved, and the values of
¢y, €y, €3, and ¢, are given without any computations. Forn > 5 the amount
of work of this method rapidly becomes prohibitive.

To calculate ¢,(x) we use (cf. (1.6), Theorem 3.1, and (3.10) with 8 = n~Y/3)

) = A ) = s Y 1K
27 Ala

©

+ nt2y Y (

J=1 (& /n)—x|in—t2

L3
n

— x| =) p ). @)
Taking n = 5 we get seven different expressions for ¢;(x), which we denote
by €5,1(%),000 C5,7(%).

Caal) = (1 — 2 5 (1 x — gf—/é) X (4 — Sx — S xY(] — x)

(6 — 10% — 25 x3(1 — 1 + (1 — x — og) ]

2
forxe[(),l *W] =:J;,
2 ‘ 2 3 1
C5.0(x) = c5(x) — 512 (1 —Xx — —51/2) x5 for xe [1 — g5 ——51/2} =:J5,

C5,%) = C5,9(%) — 526 — 10x — 2(5)*%) x%(1 — x)?

forxe[%—gli—/i,%] =:J;,

Coul®) = HEM (L — x4 512 (1 — x — i)

4 1
5

+ (4 — 5x — 5% x4(1 — x)s for x e [ — 51/2} =:J,,

1
5 s
Cs.5(x) = ¢5.4(x) — 5Y2(4 — Sx — 51/2) x41 — x)

for xe[%-gziﬁ,%] =:J5,
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Cs.6(x) = 6(5)1/2 x3(1 — x)® -} 51/2 (1 —x— —5~11ﬁ) x®
2 1
for xe[g,gl—/é] =:Jg,
1 s
C3.(3) = €3,g(x) + 57 (x — 51) (1 — )P

for xe[%«z,%] =:J;.

It is quite elementary to show that

max ¢;(x) = ¢;(3) = ()2 — 1)/16 = 0.217008.

To prove that, in fact, ¢; = c4(}), we compare cy(x) on J, ,..., J; with this
number. By straightforward calculation one shows that
cs(x) < 0.1368 on J; , c5(x) < 0.1542 on J,, c5(x) < 0.1558 on J,,
c5(x) < 0.2011 on J,, c5(x) < 0.1989 on J;, cs(x) = 0.2069 on Jg ,
and hence that ¢; = (2(5)1/2 — 1)/16.

The calculation of ¢, , ¢y, ¢5, and ¢, is similar to that of ¢, , but simpler.

We state their values in the following theorem. For more details we refer
to [7].

THEOREM 4.1. For the c, as defined in (1.3) (see also (1.7)) one has
¢, = ¢(1/2) == 1/4 = 0.250000,
¢ = c(1/3) = (4/27)(2)1/2 == 0.209513,
c; = ¢y(1/2) = (1/8)(3)*/2 = 0.216506,
ey = ¢4(2/5) = 664/3125 = 0.212430,
c; = ¢5(1/2) = (2(5)12 — 1)/16 = 0.217008.

5. A SmvpLE PROOF OF ¢® =1}

From formula (3.9) with 6 = n~2/* we have
) =%1x— x|+ Y (I x — x| —jm 23, (5.1
i1

We compare f,, with a quadratic function g, defined by

I [ M i M
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The function g,, is easily seen (cf. (2.1)) to have the following properties:

gu(x) = fulx)  forall x, (5.3)
Bo(qn 5 X0) = $(xo(1 — xo)/m)/2. 5.4

Now, using (4.1), (3.1), and the fact that f,(x,) = 0, by the positivity of B,
we obtain from (5.3 and (5.4)

CalXe) = M PB(fn s %) < W PBu(gn ;s Xo) = 3(xo(l — X)) < 3. (5.5)

From (5.5), together with the fact that ¢, = ¢(}) = } (cf. Theorem 4.1},
we obtain one of the main results of this paper, viz.,

TreoreMm 5.1.

S 2B (fix)—fx)] 1
(1: — n - = —
TR T w (T i

Remark 5.1. Similarly, by comparing f, with a quadratic function §,
such that ¢, < f,, we obtain a lower bound for c,(x). Combining this resuit
with (5.5), we get

(1l — x) < (%) < Hx(I — xR (5.6)

6. DETERMINATION OF ¢{®

The bound ¢ is unsatisfactory for the following reasons. It is attained
for n = 1, which seems a bit too special, and the value of ¢V differs rather
much from both the next few values of ¢, (cf. Theorem 4.1) and the limiting
value ¢ (cf. Theorem 7.1). We are therefore led to look for ¢ = sup,, ¢, .
The main result of this section is

THEOREM 6.1.

m2 ] B,(f; x) — f{x)

@) .
M S 2 RPN D
1/2
—c, = ﬁﬁ_ﬂl — 0.217008497.

Proof. We start from (1.7) and (4.1), and we write for fixed x, € [0, 1]
{cf. (2.3)

cn(Xg) = Su(x9) 4 Ryu{xy),



78 SCHURER AND STEUTEL
where R, is defined by

Rn(xo) = nllan(Qn ; xo)
with
Ou(x) := Z (I x — xo| —jn 23, .
=1

We give a bound for R,(x,) by estimating Q,(x) by a polynomial P,(x)
defined as

Po(x) == (5°/65) n®/*(x — x,)°.

It is easily verified that Q,(x) << P,(x) for all x, and hence, by the positivity
of B, , that

Ru(xo) < m'PBy(Py ; Xg) = (5°6°) n=°T, 5(x,), (6.1)

with T, ¢ as given in (2.2). As T, ¢(x) is maximal at x = % for all n > 4,
it follows that

55 1
* o 48 _
Ro(xg) < Ro* 1= 25 n7T(5)
56 2 16 2 16
— o7 (1 — =+ g5r) = 0.0156%9 (1-=+ To ). 62)
Theorem 4.1 takes care of the cases n = 2, 3, 4. Hence, it is sufficient
to prove that for n >> 6, and all x € [0, 1]

S,(x) < 0.217008 — 0.015699(1 — (2/n) + 16/(1512). (6.3)

In Table I the values of || S, | (n = 1, 2,..., 30) (cf. Lemma 2.2) and of
o, := 0217008 — R,* (n = 4, 5,..., 30) are given, and from this table it
follows that (6.3) holds for all these values of n with the exception of 7, 9,
and 11. As the values of n > 30 are taken care of by the monotonicity of
[1.So; ]| and || g || (cf. (2.6)), only the cases 7, 9, and 11 remain. We treat
these cases separately and briefly; for details we again refer to [7].

Case n = 7. It can easily be shown that on [0, 0.48] one has S,(x) <
S5,(0.48) = 0.205380. As R,* = 0.011555, it follows that c,(x) << 0.216935.
Therefore we may restrict x to [0.48, 0.50]. On this interval we have (cf. (4.1))

e(x) = 20(TP2 X4(1 — 2% 4 T(1 — x)'(x — T-1%) 4 x7(1 — x — T2},

which is maximal at x = %, with ¢ () = (11(7)/2 — 2)/128 = 0.211744. 1t
follows that ¢, < ¢;.



BERNSTEIN POLYNOMIALS 75

TABLE I

n 11 8all o, n 181 oy
1 0.250000 16 0.202246 0.203207
2 0.209513 17 0.202425 0.203099
3 0.216506 18 0.201969 0.203002
4 0.207360 0.208112 19 0.202112 0.202816
3 0.209631 0.206919 20 0.201743 (.202838
6 0.205586 0.206077 21 0.201859 0.20276¢7
7 0.206699 0.205453 22 0.201554 0.202702
8 0.204419 0.204973 23 0.201650 0.202643
9 0.205078 0.204591 24 $.2013%4 0.202589
10 0.203614 0.204282 25 0.201475 0.202539
11 0.204050 0.204026 26 0.201256 0.202452
12 0.203031 0.203810 27 0.201326 0.202450
13 0.203340 0.203626 28 0.201137 0.202410
14 0.202590 0.203467 29 0.201198 0.202372
15 0.202821 0.203328 30 0.201033 0.202338

Case n = 9. Similarly, we may restrict x to [4/9, 1/2}, and on this interval
cox) = 210x3(1 — x)®
+3{(1 — 2°x — ) + (1 — 2 xOx — 4)
+ x%(1 — 0)(5 — 9x) + x*(F — x)}.
This expression is maximal at x = § with ¢4(3) == 109/512 = 0.212891 < ¢;.

Case n = 11. Restricting x to [0.49, 0.50] we improve slightly on the
inequalities (6.1) and (6.2). As 0(0) < P{0) —0.17 and 0,(1) <
P (1) — 0.20, it follows that the estimate (6.2) can be improved by

11/200.17(1 — x)™ + 0.20x%} > 0.000550  (x & [0.49, 0.50]).

From Table I it follows that this suffices to prove that ¢;; << ;. This con-
cludes the proof of Theorem 6.1.

Remark 6.1. From the proof of Theorem 6.1 it does not follow that

e, = (&) for n = 7,9, and 11. Careful computation however, shows that
this is true.

640/16/1-6
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7. THE LIMITING BEHAVIOR OF ¢,(x) AND ¢,
We shall prove

THEOREM 7.1. For c,(x) and c, as defined in (1.6) and (1.3) (cf. (1.7)), we
have
, 1/2 e @
o) = lim ¢, = (5—) " +2612 Y | (X () d

2m j=1 “jx~1/2

0<x<1, (1.1

o

—2 ¥ j(1 — D(2))) = 0.20796899.

lim ¢, = c(}) = @m)*~ 3 + ) e
H—> .=1
a (7.2)

i1

<,

Here X = x(1 — x), o(x) = Q2m)112 exp(—1x?), and D(x) = ﬁw (1) du.

To establish this theorem we state two lemmas; for the proof of Lemma 7.2
we refer to [7].

Lemma 7.1. If U is a nonnegative random variable with distribution
Jfunction F, then, denoting expectation by E,

E(U—a), = | "0 —Fu)du (a0 (1.3)

Lemma 7.2. If V, is a binomial random variable with expectation nx and
variance nX, and if we put U, = (V,, — nx)(nX)'/2, then for the distribution
Junction F,, of | U,, | one has

1 — F(u) < 2exp(—u2x(1 — x)) u=00<x<<)

Proof of Theorem 7.1. Using Lemmas 7.1 and 7.2, in view of (4.1) we
have

cu(x) = X172 g%EI Un | -+ i E( U, | —jX”1/2)+§

=1

= X1/

3 fo Q- P dut Y |7 a—Fw du%. (7.4)

=]
j=1 Vix~—1/2

By the Berry—Esseen version of the central limit theorem [3, p. 542], 1 — F,(u)
tends to 2(1 — ®(w)), uniformly in xe[8,1 —&] for any & > 0. By
Lemma 7.2 the integrals in (7.4) converge uniformly inj,nand x € [5, 1 — §],
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and the sum converges uniformly in n and x. It then follows that, uniformly
inxeld, 1 — 8],

&H}( cp(x) = X2 %f (1 — @) du+2 z f — B(u)) du%,
e (7.5)

which by (7.3) is equivalent to (7.1). We note that x,, satisfying ¢, = ¢,{x,,)
is bounded away from 0 and 1 {cf. (5.6)). Now using the fact that (7.5) holds
uniformly in x {8, 1 — 8], we obtain (cf. (1.5))

= lim¢, = hm en(}) = f (0 —Bw)du-t2 i j (1 — D(u)) du,

>0

which is equivalent to (7.2). The numerical value can be obtained from |1,
pp. 968-972],

CONCLUDING REMARKS

The techniques used in this paper can be employed to treat similar problems
for other values of 8 in w(f; 8). For 8 = n?* this has been done in [8]. The
value § = n~/2 seems to be the most natural, whereas 8§ = »n* yields the
most explicit results.

Estimates for different values of & can be connected by the obvious
inequality w,(-; 8,) << (8,/8; 4+ 1) wy(*; 84) for &; > &; . This has been done
in [4], where local results (i.e., results containing x) for 6 = a*and § = »n1/
are derived, which are weaker than the results obtained in [8] and the present
paper.

It may be possible to improve somewhat on the results or the proofs in
{2, 9, 10] by the type of argument used in this paper.
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